

Polarised Light Microscopy

Adapted from Peter Evennett

Example: Meiosis

charge coupled device (CCD) Processed image based on 5 recorded

CIL:9060+

Processed image based on 5 recorded

Sample Preparation

Spatial Axis Image Size **Pixel Size** 500ps 870m

Time

500ps

120 sec

87nm

153

*CIL - Cell Image Library accession number. Please use this to reference an image.

http://www.cellimagelibrary.org/

Light waves

 Light waves vibrate within a plane transverse to the direction of propagation

- Orientation of the plane relative to the direction of propagation:
 - → Polarisation

Polarisation of light

- 'Natural Light': vibrations occur in all directions
- Polarised Light: all but one of these directions have been 'filtered out'

Polarisation Filters

- Preferred angle: all light passes
- Rejected angle: no light passes
- Other angles: some light passes with preferred polarisation angle

Vector Summation

Adapted from Peter Evennett

Birefringence

- Separate single beam into two beams/waves
- Refractive index dependent on direction of propagation
 - Ordinary beam: refracted normally
 - Extraordinary beam: refractive index depends on angle of beam and can exhibit an additional angular shift
- Both waves polarized along orthogonal axes

Apparent Depth

Calcite gives a double image at two apparent depths because it has two refractive indices.

And use of the polar shows that these relate to mutually perpendicularly polarised beams.

Adapted from Peter Evennett

Effect of Birefringent Samples

Interference

Effects on Contrast

- Optical Path Difference (OPD)
 - Difference in refractive index for polarisation axes
 - Thickness of specimen
- Also depends on orientation of birefringent material relative to polariser/analyser
 - Optimal if diagonal relative to the polariser
- Additional optical components
 - Retardation plates: introduce fixed optical path difference
 - Compensators: introduce variable optical path length

Example

Quartz wedge between crossed polars

Adapted from Peter Evennett

Interference Colours

It is possible to guess the OPD from the interference colour using the Michel Lévy chart. If the thickness of the object is known, the birefringence can be calculated.

Michel-Lévy Interference Colour Chart

How to set it up

What is it good for

- Imaging of birefringent materials
 - Microtubuli (e.g. spindle apparatus)
 - Actin (e.g. muscle cells)
 - Cellulose (e.g. starch)

Potato Starch

Potato Starch – Crossed Polars

What is it good for

- Imaging of birefringent structures
 - Microtubuli (e.g. spindle apparatus)
 - Actin (e.g. muscle cells)
 - Cellulose (e.g. starch)
 - Crystals
- Visualization of sample properties
 - Differences in refractive indices in birefringent structures
 - Composition of materials
 - Thickness of sample
 - Molecular structure
 - Orientation of molecules (e.g. stretching/stress)
- **BUT:** limited to birefringent materials!

PolScope

Brugues Lab

Liquid Crystal Compensator

Primary Spermatocyte (nephrotoma suturalis)

http://www.openpolscope.org

Spindle fluctuations

Orientation field n(x,t) Microtubule orientation at every pixel

Density field c(x,t) Retardance: microtubule density x degree of alignment

Brugues Lab

Overlapping pieces of Sellotape

Pine needle

Pine needle – Crossed polars

Viscose fibres

Viscose fibres – Crossed polars

Human hair

