Living cells are highly organized in space and time, which makes spatially and temporally confined manipulations an indispensable tool in cell biology. Laser-based nanosurgery is an elegant method that allows precise ablation of intracellular structures. Here, we show cutting of fluorescently labelled microtubules and mitotic spindles in fission yeast, performed with a picosecond laser coupled to a confocal microscope. Diverse effects from photo-bleaching to partial and complete breakage are obtained by varying the exposure time, while simultaneously imaging the structures of interest. Using this system we developed an efficient technique to generate enucleated cells without perturbing the distribution of other organelles. This enucleation method can be used to study the cytoskeleton in a nucleus-free environment, as well as the role of the nucleus in cell growth and a variety of cellular functions.
Enabled by: